MHD eigenmodes in a semi-infinite structured solar atmosphere
نویسندگان
چکیده
Linear eigenmodes are determined for the solar atmosphere in the presence of a gravitational field and a magnetic field. The atmosphere consists of a horizontal nonuniform chromosphere and a semi-infinite nonuniform corona. It is bounded from below by a heavy and immovable photosphere. Inhomogeneity is confined to the vertical direction. The gravitational acceleration is constant and the equilibrium magnetic field is horizontal. The equilibrium temperature increases linearly with height in the chromosphere and is constant in the corona. The equilibrium magnetic field is constant in the chromosphere and it decreases with height in the corona in such a way that the Alfvén speed is constant there. The results show that there are two sets of eigenmodeswhich can be viewed as pand g-modes modified by the immobile lower boundary of the atmosphere and by the magnetic field. The modes can become damped quasimodes with complex frequencies arising from the resonant coupling of eigenmodes to the local MHD continua in the nonuniform chromospheric layer.
منابع مشابه
MHD surface type quasi-modes of a current sheet model
Resonantly damped surface type quasi-modes are computed as eigenmodes of the linear dissipative MHD equations for a simple equilibrium model of a current sheet. The current sheet is modeled by a nonuniform plasma layer embedded in a uniform plasma environment. The physical equilibrium variables change in a continuous way in the nonuniform plasma layer. In particular, this is the case with both ...
متن کاملDirichlet series and approximate analytical solutions of MHD flow over a linearly stretching sheet
The paper presents the semi-numerical solution for the magnetohydrodynamic (MHD) viscous flow due to a stretching sheet caused by boundary layer of an incompressible viscous flow. The governing partial differential equations of momentum equations are reduced into a nonlinear ordinary differential equation (NODE) by using a classical similarity transformation along with appropriate boundary cond...
متن کاملCollisional and viscous damping of MHD waves in partially ionized plasmas of the solar atmosphere
Magnetohydrodynamic (MHD) waves are widely considered as a possible source of heating for various parts of the outer solar atmosphere. Among the main energy dissipation mechanisms which convert the energy of damped MHD waves into thermal energy are collisional dissipation (resistivity) and viscosity. The presence of neutral atoms in the partially ionized plasmas of the solar photosphere, chromo...
متن کاملMHD waves and instabilities in flowing solar flux-tube plasmas in the framework of Hall magnetohydrodynamics
It is well established now that the solar atmosphere, from photosphere to the corona and the solar wind is a highly structured medium. Satellite observations have confirmed the presence of steady flows. Here, we investigate the parallel propagation of magnetohydrodynamic (MHD) surface waves travelling along an ideal incompressible flowing plasma slab surrounded by flowing plasma environment in ...
متن کاملOscillations in a magnetic solar model I. Parallel propagation in a chromospheric and coronal magnetic field with constant Alfvén speed
Oscillation eigenmodes are studied for a planar solar model with a non-uniform horizontal magnetic field in the atmosphere. The three layer atmospheric model is the same as in Tirry et al. (1998). The analysis in that paper is extended to a wide range of parameters. Different types of oscillation modes are determined for a wide range of the magnetic field strength and for different degrees of t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997